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ABSTRACT	

Computational	Fluid	Dynamics	 (CFD)	solutions	have	played	an	 important	role	 in	 the	design	of	
modern	air	and	space	transportation.	CFD	is	also	playing	a	significant	role	in	the	designing	of	new	
devices,	such	as,	hypersonic	airframes	and	propulsion	systems,	scramjet	and	ramjets.	CFD	is	now	
providing	the	much	needed	guidance	to	designers,	since	analytical	solutions	are	not	available	and	
in	many	cases,	experimental	conditions	cannot	be	reproduced.	CFD	provides	useful	information,	
such	 that,	when	used	along	with	 traditional	wind	 tunnel	data	enhances	 the	understanding	of	
pertinent	fluid	phenomena.	However,	notwithstanding	its	importance	over	the	last	two	decades,	
CFD	 have	 so	 far	 failed	 to	 provide	 a	 unique	method	 capable	 of	 solving	 a	wide	 range	 of	 fluid	
dynamic	 problems,	 accurately,	 efficiently	 and	 inexpensively.	 The	 research	 conducted	 herein	
seeks	 to	 enhance	 current	 CFD	 capability	 by	 eliminating	 this	 major	 drawback.	 A	 CFD	 survey	
concluded	that	a	novel	scheme	called	Integro-Differential	Scheme	(IDS)	Ferguson	et	al.1	may	have	
the	capability	to	alleviate	the	limitations	CFD	currently	experiences.	

The	focus	of	this	research	is	therefore	to	demonstrate	that	IDS	has	the	capability	to	solve	a	wide	
variety	of	CFD	problems	accurately,	efficiently	and	inexpensively.	In	particular,	the	focus	of	this	
paper	 is	 to	demonstrate	 that	 the	 IDS	methodology	has	 the	capability	of	accurately	predicting	
complex	flow	physics	under	realistic	conditions.	To	this	end,	this	paper	focuses	on	the	accuracy	
with	which	the	IDS	captures	the	complex	flow	physics	associated	with	multiple	shock	interactions	
in	the	midst	of	boundary	layer	separation	and	flow	field	expansion.	Further,	in	efforts	to	directly	
highlight	this	capability,	a	set	of	Flow	Physics	Extraction	Functions	(FPEF)	were	developed	and	
implemented.	These	functions	use	the	primitive	variables	to	detect	shocks	and	expansion	waves,	
separation	 and	 recirculation	 zones,	 and	 zones	with	 high	unsteadiness	 and	 vortices.	 The	 FPEF	
approach	supplements	the	traditional	way	of	exploring	datasets	using	contour	plots	of	primitive	
variables.	The	two	problems	of	interest	are:	(i)	the	'inviscid-viscous'	interactions	associated	with	
the	boundary	layer	at	the	leading	edge	of	a	hypersonic	flat	plate,	and	(ii)	the	interactions	due	to	
the	injection	of	a	high	pressure	sonic	jet	into	supersonic	cross	flow.	The	results	obtained	from	
this	 study	 are	 very	 encouraging,	 as	 they	 demonstrated	 that	 the	 IDS	 has	 the	 capabilities	 of	
accurately	 predicting	 the	 fluid	 physics	 associated	 with	 complex	 fluid	 flows	 under	 realistic	
Reynolds	numbers.	

INTRODUCTION	

The	equations	that	govern	fluid	flows	are	described	by	the	conservation	of	mass,	momentum	and	
energy	principles.	These	equations,	when	coupled,	are	known	as	 the	Navier-Stokes	Equations	
(NSE).	 The	 coupled	 NSE	 form	 a	 set	 of	 nonlinear	 partial	 differential	 equations	 which	 lend	
themselves	 to	 analytical	 solutions	 only	 under	 'highly	 simplified'	 scenarios.	 In	 general,	 the	
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mathematical	behavior	of	the	NSE	is	complex	and	unpredictable.	It	is	not	possible	to	categorize	
the	NSE	 strictly	 as	hyperbolic,	 elliptic	 and	parabolic	 types,	 as	 the	NSE	 is	 very	 sensitive	 to	 the	
properties	 of	 its	 boundary	 and	 initial	 conditions.	 The	 very	 nature	 of	 the	 NSE	 make	 the	
implementation	 of	 most	 numerical	 methods	 very	 unpredictable	 when	 they	 are	 tasked	 in	
providing	the	solutions.	

One	commonly	acceptable	numerical	procedure	 for	 solving	 the	NSE	 is	 the	method	of	directly	
resolving	 all	 the	 temporal	 and	 spatial	 scales.	 This	 approach	 is	 known	 as	 Direct	 Numerical	
Simulations	 (DNS).	 However,	 the	 computational	 cost	 associated	 with	 the	 DNS	 approach	 is	
prohibitively	 expensive.	 	 In	 fact,	 for	 three	 dimensional	 problems,	 the	 computational	 cost	 is	
determined	to	be	function	the	Reynolds	number,	that	can	be	expressed	in	the	order	of	N,	such	
that,	 𝑁 = 𝑂(𝑅𝑒' ()	 2.	 Consequently,	 solving	 fluid	 flow	 problems	 for	 realistic	 engineering	
applications	will	 not	 be	 routinely	 possible	 in	 the	 near	 future	 using	 DNS.	 On	 the	 other	 hand,	
current	 experimental	 facilities	 are	 not	 always	 capable	 of	 simulating	 the	 solution	 required	 by	
aircraft	designers	and	propulsion	engineers.	 In	efforts	to	extend	the	capability	of	today’s	CFD,	
this	research	focuses	on	a	CFD	solution	method	for	the	NSE,	the	so-called	 Integro-Differential	
Scheme1	(IDS).	The	IDS	 is	potentially	accurate,	efficient	and	inexpensive	and	is	applicable	to	a	
wide	range	of	fluid	problems	under	realistic	boundary	conditions.	

The	main	objective	of	this	research	is	to	both	qualitatively	and	quantitatively	verify	the	physics	
predicted	by	the	IDS	solution	when	it	is	applied	to	the	NSE	for	high	Reynolds	numbers.	Previous	
studies	Ferguson	et	al.3,	1,	4	have	shown	that	the	IDS	scheme	is	accurate.	However,	these	studies3,	
1,	 4	 relied	 on	 the	 traditional	 way	 of	 exploring	 the	 solution	 space,	 and	 did	 not	 effectively	
demonstrated	 the	 physics	 capturing	 capabilities	 of	 the	 IDS5,	 6.	 In	 general,	 the	 previously	
established	techniques	that	are	based	on	the	manipulation	of	the	primitive	variables	cannot	be	
relied	upon	to	accurately	detect	shock	and	expansion	waves,	and	other	flow	field	phenomena.	
Rather,	physics	based	methods	that	are	designed	to	extract	meaningful	 information	from	CFD	
solutions	are	preferred.	An	important	part	of	this	research	effort	was	dedicated	to	the	creation	
and	 implementation	of	 flow	physics	 extractions	 functions	 (FPEF).	 This	 paper	briefly	 describes	
these	FPEF	and	discussed	their	findings	in	relations	to	fluid	flow	problems.	

THE	NAVIER-STOKES	EQUATIONS	

In	this	research	project,	the	NSE	are	of	paramount	importance	and	they	are	listed	as	follows:	
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respectively.	 In	 Equations	 (1	 -	 3)	 the	 symbols;	 tuk ,,r ,	 represent	 the	 density,	 the	 velocity	
components	of	 an	elementary	 control	 fluid	element,	 and	 time,	 respectively.	 	 In	 addition,	 the	
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symbols,	 e ,	 p ,	 ikt 	and	 kq ,	in	equations	(1	-	3)	represent	the	internal	energy,	the	pressure,	the	
stress	 tensor	and	 the	heat	 flux	associated	with	an	elementary	 control	 volume.	 	Again,	 in	 this	
research,	internal	energy,	pressure,	stress	tensor	and	heat	flux	are	defined	by:	
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respectively.	In	equation	(5),	R	is	the	gas	constant.	The	symbols,	µ,	and	k,	represent	the	viscous	
and	 thermal	properties	of	 the	 fluid	of	 interest.	 	 For	air,	 the	viscosity	of	 the	 fluid	 is	evaluated	
through	the	use	of	Sutherland’s	law9,	
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and	the	thermal	conductivity	expression,	
( )Tfk = 	 	 	 	 	 	 (9)	

is	provided.	In	the	case	of	3D	aerodynamic	analysis,	the	Navier-Stokes	equations	(1)–(9)	defined	
above	 can	be	 treated	 as	 a	 closed	 system	of	 five	 equations	 relative	 to	 five	unknowns.	 	 These	
unknowns	 are	 the	 following	 five	 primitive	 flow	 field	 variables:	 [ ] 3,2,1,,, =kTukr .	 It	 is	 of	
interest	to	note	that	equations	(1	-	9)	generates	a	unique	solution	set,	only	when	an	appropriate	
set	 of	 initial	 and	 boundary	 conditions	 are	 provided.	 The	 primitive	 variables	 associated	 with	
equations	(1-9)	are	evaluated	using	the	IDS	procedure,	which	was	described	in	Ferguson	et	al.	1,	
and	as	such,	the	details	are	not	repeated	herein.	

FLOW	PHYSICS	EXTRACTION	FUNCTIONS	(FPEF)	

When	 solving	 a	 given	 fluid	 dynamic	 problem,	 preferably	 one	 with	 complex	 interactions,	 it	
becomes	important	to	identify	the	size,	location	and	strength	of	the	relevant	flow	phenomena	
occurring	within	the	field.	Of	greater	importance	is	the	fact	that	unbiased	measures	are	needed	
to	qualify	these	phenomena	along	with	their	relative	strengths	and	sizes	in	the	regions	of	interest.	
In	an	effort	to	 identify	the	associated	flow	physics	predicted	by	the	IDS	procedure	specialized	
FPEF	 were	 created	 as	 part	 of	 this	 research	 effort.	 Further,	 in	 this	 research,	 the	 FPEF	 are	
considered	 specialized	 functions	 that	 use	 the	 primitive	 flow	 field	 variables	 to	 predict	 the	
appropriate	flow	physics	within	the	domain.	

Similar	 analysis	 were	 conducted	 by	 many	 authors4-5,	 resulting	 in	 varying	 degrees	 of	 shock	
identification	and	location.	For	example,	a	technique	based	on	the	theory	of	characteristics	was	
introduced	by	Kanamori	et	al.	 7	where	they	circumvent	 the	problem	of	 locating	 the	region	of	
steep	spatial	gradients	with	respect	to	the	primitive	variables.	In	another	example,	Lovely	et	al.	5	
introduced	a	method	that	takes	advantage	of	the	fact	that	pressure	gradients	are	always	normal	
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to	the	shocks	and	the	Mach	number	normal	to	the	shock	has	at	least	a	value	of	one	before	the	
shock.	 In	a	 similar	 research	 study,	Pagendarm	et	al	 6	proposed	a	method	 that	 locates	 shocks	
waves	by	 searching	 the	maxima	of	density	 gradient.	However,	only	 the	method	proposed	by	
Pagendarm	et	al.	6	can	capture	expansion	waves	and	compression	waves,	whereas	the	other	two	
techniques	 capture	 compression	waves	 only.	 Also,	 there	 are	 numerical	 difficulties	 associated	
with	shock	detection.	Although	shocks	are	sharp	discontinuities	on	the	primitive	variable	field,	
the	shocks	are	smeared	over	several	grid	cells,	due	to	errors	in	the	numerical	implementation	8.	
Therefore,	 some	 shocks	 are	 undetected	 by	 the	 algorithm	 or	 the	 numerical	 oscillations	 may	
produce	false	indications.	As	a	result,	filtering	is	required	so	that	weak	shocks	are	detected	and	
false	 indications	are	eliminated	 from	the	solution.	Unfortunately,	defining	a	 threshold	 for	 the	
filtering	 function	 is	 not	 a	 trivial	 task	 and	 may	 vary	 from	 problem	 to	 problem.	 Ziniu	 et	 al.	 9	
proposed	a	new	filtering	criteria	that	takes	 into	account	the	 local	mesh	size	and	the	absolute	
pressure.	However,	the	filtering	criteria	also	requires	also	a	threshold	and	they	suggested	a	value	
of		𝝐 = 𝟎. 𝟎𝟎𝟏.	In	practical	applications,	different	FPEF	may	be	required,	depending	on	the	local	
conditions	 and	 the	 properties	 of	 the	 flow,	 i.e:	 zone	 with	 considerable	 rotation,	 strain	 or	
significant	changes	in	entropy.	These	different	FPEF	will	complement	the	traditional	way	of	using	
contour	plots	from	the	primitive	variables.	

Equation	(10)	shows	the	first	FPEF	based	on	the	gradient	of	density	in	the	direction	of	the	velocity	
proposed	by	Pagendarm	et	al.	6.	
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Condition	𝑑𝜌 𝑑𝑛 > 0	corresponds	to	compression	waves	and	when	𝑑𝜌 𝑑𝑛 < 0	corresponds	to	
expansion	 waves.	 The	 mathematical	 formulation	 for	 a	 stationary	 shock	 wave	 based	 on	 the	
normal	Mach	number	presented	by	Lovely	et	al.	5	is	shown	in	equation	(11).	
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Although	this	study	used	equation	(10)	without	filtering,	the	filtering	criteria	proposed	by	Ziniu	
et	al.	9	with	a	threshold	of	𝜖 = 0.007	is	used	to	filter	the	solution	from	equation	(11).	Functions	
independent	 from	 steep	 gradients	 are	 beneficial,	 since	 they	 do	 not	 rely	 exclusively	 on	 sharp	
discontinuities	 on	 the	 primitive	 variables.	 Therefore,	 functions	 relating	 kinematics	 and	
thermodynamics	are	very	useful	and	effective.	Equation	(12)	shows	Crocco10	equations	and	the	
magnitude	of	 the	entropy	 gradient	 is	 represented	 in	 equation	 (13).	 Shocks	waves	 are	 a	 truly	
inviscid	phenomenon	and	 therefore	equation	 (12)	 can	be	used	 to	 locate	 shocks	waves,	 since	
gradients	in	entropy	give	rise	to	rotation	and	equation	(13)	demonstrates	that	flow	is	rotational	
behind	shocks.	However,	 it	 is	 important	to	mention	that	equation	(13)	and	(14)	are	only	valid	
outside	boundary	layers.	

( ) SThVV Ñ-Ñ=´Ñ´ 0 	 	 	 	 	 (12)	
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Another	function	based	exclusively	on	fluid	kinematics	is	the	Q-criterion	proposed	by	Hunt	et	al.	
11.	They	found	that	identifying	regions	in	a	flow	field	can	provide	important	information	that	can	
describe	and	characterize	important	flow	features.	Equation	(14)	represents	the	Q-criterion	and	
it	represents	the	local	balance	between	strain	and	vorticity,	therefore	it	can	determine	zone	with	
contractions	 and/or	 dilatation,	 proper	 of	 shock	 waves	 and	 zones	 where	 shear	 stresses	 is	
significant.	

( )22

2
1 SQ -W= 	 	 	 	 	 (14)	

where	 𝛺 	and	 𝑆 	 represent	 the	 Euclidean	 norm	 of	 the	 vorticity	 and	 rate	 of	 strain	 tensor,	
respectively.	Consequently,	Q-criterion	identifies	vortices	as	areas	with	positive	values,	whereas	
negative	values	represent	areas	with	high	strain.	

THE	IDS	APPLICATIONS	AND	PHYSICS	BASED	EVALUATION	

To	demonstrate	the	physics	capture	capabilities	of	the	IDS,	two	established	fundamentals	high	
Reynolds	number	fluid	dynamic	problems	were	numerically	solved.	The	problems	of	interest	in	
this	study	are	as	follows:	

1. Hypersonic	flow	over	a	flat	plate	

2. The	hypersonic	flow	cross	jet	interaction	problem	

Although	similar	problems	were	solved	recently	by	Ferguson	et	al.	4important	improvements	are	
presented	 in	 this	 study	 such	 as:	 Flow	 Feature	 Extractions	 Functions	 (FFEF)	 and	 cutting	 edge	
parallel	libraries	(MPI).	These	new	features	unmasked	important	flow	characteristics	that	were	
not	shown	before	in	Ferguson	et	al.	4;	due	merely	to	technical	limitation.		

Hypersonic	flow	over	a	flat	plate	
Flow	over	a	flat	plate	is	the	most	general	case	of	external	and	internal	flows.	Despite	the	simplicity	
of	 the	boundary	 conditions	and	domain	configuration,	 this	problem	remains	as	a	 classic	 fluid	
dynamic	problem	which	is	still	used	to	validate	and	verify	CFD	schemes	and	codes	12	13.		

The	role	that	Mach	and	Reynolds	number	play	over	the	dynamic	of	the	flow	is	important.	Recent	
findings	show	that	analytical	approximations	such	as	Van	Driest	II	14	is	not	accurately	representing	
the	velocity	profile,	especially	under	high	heat	flux	15.	Furthermore,	the	boundary	layer	thickness,	
temperature	inside	the	boundary	layer	and	coefficient	of	friction	are	strongly	dependent	to	the	
Mach	 number.	 These	 effects	 are	 more	 pronounced	 in	 turbulent	 flows	 16.	 Therefore,	 it	 is	
important	to	demonstrate	that	IDS	is	capable	of	accurately	reproducing	these	interactions	to	gain	
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insight	 on	 the	 structure	of	 compressible	 boundary	 layers	 and	understanding	 the	 influence	of	
multiple	fluid	parameters	on	the	flow	dynamics.		

This	 problem	has	 inherent	 challenges.	 The	 instabilities	 change	 the	 flow	 type	 from	 laminar	 to	
turbulent.	 The	 inviscid-viscous	 interaction	 is	 quite	 complex	 and	 it	 is	 driven	 by	 the	 very	 large	
boundary	layer	thickness.	In	fact,	the	boundary	layer	height	in	hypersonic	flows	is	proportional	
to	𝑀=

> 𝑅𝑒?	16,	and	as	a	result,	this	interaction	is	stronger	at	high	flow	speed.	The	solution	of	
the	Navier-Stokes	equations	will	be	such	that	the	computation	could	be	divided	into	two	different	
sections	 17.	An	outer	 section	where	 inviscid	 laws	dominate	and	can	be	 solved	using	potential	
theory	and	an	inner	region	where	the	viscous	forces	dominate	and	the	Navier-Stokes	equation	
must	be	used.	The	inconvenience	of	this	approach	is	that	the	boundary	layer	height	is	required	
or	 it	 is	 an	 unknown	 variable	 in	 the	 process.	 To	 circumvent	 this	 issue,	 the	 full	 Navier-Stoke	
equations	are	used.	However,	the	computational	cost	is	very	high,	since	the	thinner	portion	of	
the	 boundary	 layer	 (viscous	 sub-layer)	 must	 be	 explicitly	 solved.	 In	 addition,	 an	 important	
limitation	of	the	Navier-Stokes	equations	is	the	continuum	of	assumptions.	The	flow	near	the	tip	
of	the	leading	edge	is	described	by	kinetic	theory,	since	free	molecular	flow	exists	18.	However,	
the	Navier-Stoke	equations	can	describe	with	high	accuracy	the	physics	in	this	region	18.	

It	is	evident	that	this	problem	is	interesting	from	the	flow	dynamic	perspective.	It	encompasses	
all	 flow	 regimes	 in	 gas	 dynamics,	 from	 kinetic	 theory	 to	 continuum	 flow	 19.	 At	 supersonic	
conditions,	a	strong	leading	edge	shock	emanates	from	the	leading-edge	tip.	This	shock	is	also	
referred	to	as	“Bow	Shock”,	due	to	its	curvature;	and	the	region	between	the	surface	and	the	
shock	wave	is	called	“Shock	Layer”13.	In	addition,	the	shock	layer	is	divided	in	an	inviscid	region	
and	viscous	region.	The	latter,	also	known	as	“Boundary	Layer”.	The	boundary	layer	undergoes	
important	transition	from	laminar	to	turbulent	and	is	also	subdivided	into	two	sub-regions.	In	the	
leading-edge	region,	the	viscous-inviscid	interactions	are	very	strong	and	they	affect	the	inviscid	
portion	of	the	shock	layer.	In	contrast,	far	from	the	leading	edge,	the	viscous-inviscid	interaction	
is	 weak.	 These	 two	 zones	 are	 known	 as	 strong	 interaction	 and	 weak	 interaction	 regions,	
respectively.	These	features	impose	computational	constrains,	in	other	words,	the	mesh	must	be	
fine	enough	to	fully	resolve	the	different	regions	while	the	computation	remains	stable,	accurate	
and	achieved	in	a	timely	manner.	

Figure	1	provides	a	qualitative	representation	of	the	hypersonic	flow	over	a	flat	plate	problem	
whereas	 figure	 2	 represents	 a	 sketch	 of	 the	 computational	 domain.	 Consider	 the	 case	 of	 a	
hypersonic	flow	over	the	flat	plate	at	a	Mach	number	of	8.6,	Reynolds	number	3.475771x106	,	a	
Prandtl	number	of	0.70	and	a	specific	heat	ratio,	𝛾,	of	1.4.	The	freestream	density,	temperature,	
viscosity,	and	pressure	were	assumed	to	be	2.2497x10-2,	360	K,	2.117x10-5	kg/ms	and	2324.39	
Pa,	respectively.	To	obtain	a	grid	independent	solution	a	set	of	5	different	grid	resolutions	were	
proposed;	ranging	from	1001x1001	to	5001x16001	nodes	in	the	streamwise	and	vertical	direction	
respectively.	 The	 vertical	 direction	 dominated	 the	 grid	 generation	 since	 the	 gradients	 in	 the	
normal	directions	are	the	strongest	in	these	types	of	configurations	13.	
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Figure	1.	Illustration	of	the	flat	plate	problem20	 Figure	2.	Computational	representation	

In	this	example,	at	the	inflow	and	the	far	field	boundaries,	the	primitive	variables	are	assigned	to	
their	free	stream	values.	At	the	exit	plane,	the	flow	primitive	variables	are	extrapolated.	As	it	is	
shown	in	figure	2,	the	bottom	boundary	is	divided	in	three	sections,	representing	the	stationary	
wall	(the	flat	plate),	the	leading	and	trailing	edge	gaps.	Symmetric	boundary	condition	is	imposed	
to	the	leading	and	trailing	edge	gap.	No-slip	boundary	condition	and	fixed	wall	temperature	is	
assigned	 to	 the	 stationary	 wall,	 whereas	 density	 is	 extrapolated	 from	 the	 inner	 nodes.	 The	
temperature	 at	 the	 bottom	wall	 is	 assigned	 at	 1.0.	 The	 focus	 of	 this	 investigation	 is	 on	 the	
qualitative	analysis	of	the	IDS	formulation	and	its	capability	to	reproduce	the	physics	associated	
with	 complex	 flowfields.	 The	 solution	 of	 the	 Navier-Stokes	 equations	 delivered	 by	 the	 IDS	
provides	a	set	of	 four	 independent	flowfield	parameters,	namely,	density,	velocity	vector	and	
temperature.	 Therefore,	 the	 grid	 independence	 studies	 were	 performed	 using	 these	 four	
primitive	variables	in	two	different	locations;	these	are:	one-half	of	the	plate	and	at	the	outlet.	
In	this	report,	only	the	plots	corresponding	to	the	half	of	the	plates	are	shown	(refer	to	figures	3-
6).	However,	the	trends	found	at	the	outlet	agreed	with	the	behavior	from	figures	3-6.	

The	plots	illustrated	in	figures	3-6	show	the	vertical	distribution	of	the	primitive	variables	at	0.5	
meters	 from	 the	 leading	 edge.	 The	 plots	 suggest	 a	 grid	 independent	 solution	 on	 the	 mesh	
5001x16001	with	a	difference	of	2.11%	compared	with	the	mesh	4001x8001.	Another	important	
feature	from	this	study	is	the	fact	that	figure	5	and	6	show	a	similar	trend	under	the	different	
meshes.	Nevertheless,	figures	3	and	4	depict	important	features	that	agree	with	other	references	
and	experimental	data.	Specifically,	figure	4	shows	the	effect	of	viscous	dissipation	within	the	
boundary	layer	16.	The	temperature	starts	increasing	from	the	outer	edge	of	the	boundary	layer	
towards	the	wall,	reaching	a	peak	somewhere	between	the	outer	edge	and	the	wall.	This	trend	
is	also	found	in	Anderson	21	and	Van	Driest	14.	In	turn,	density	decreases	since	pressure	remains	
almost	constant.	Another	important	conclusion	of	this	grid	independence	study	is	the	fact	that	
two	important	layers	are	observed	from	these	plots;	namely,	the	boundary	layer	and	the	shock	
layer.	Figure	4	and	5	clearly	depicted	these	two	regions.	It	is	inferred	from	these	plots	that	the	
approximate	height	of	the	boundary	layer	is	0.01	non-dimension	height	above	the	plate	whereas	
the	shock	layer	extends	up	to	0.08	non-dimensional	units.	Note	that	figures	3-6	indicate	that	the	
shock	layer	height	predicted	by	the	different	meshes	is	approximate	the	same.	Figures	3	and	4	
confirm	that	the	viscous	effects	properties	of	the	boundary	layer	affect	the	magnitude	of	density	
and	temperature,	showing	that	the	IDS	scheme	is	consistent	as	the	mesh	size	is	reduced.		
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Figure	3.	Density	distribution	at	0.5*L	 Figure	4.	Temperature	distribution	at	0.5*L	

	 	
Figure	5.	U-Velocity	distribution	at	0.5*L	 Figure	6.	V-Velocity	distribution	at	0.5*L	

Contour	plots	of	the	four	independent	flowfield	variables	are	shown	in	figures	7-10.	These	figures	
correspond	to	a	small	window	from	the	complete	data	set.	The	objective	of	these	contour	plots	
is	to	show	the	region	with	strong	interactions.	For	these	types	of	problems,	the	zone	nearest	to	
the	leading-edge	tip	is	the	regions	with	the	strongest	interactions	and	gradients.		

	 	
Figure	7.	Density	contour	 Figure	8.	“U”	Velocity	contour	

	 	
Figure	9.	“V”	Velocity	contour	 Figure	10.	Temperature	contour	
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Figures	7-10	show	a	region	of	the	flat	plate	corresponding	to	0.248 ≤ 𝑥 ≤ 0.253	and	0 ≤ 𝑦 ≤
0.00125.	 It	 is	 important	to	mention	that	these	plots	correspond	to	non-dimensional	primitive	
variables.	Figure	7	shows	the	density	contour	in	the	region	represented	by	the	window.	It	also	
shows	 a	 region	with	 high	 density	 nearest	 to	 the	 leading	 edge	 corresponding	 to	 the	 jump	 in	
pressure,	due	to	the	shock	emanating	from	the	leading-edge	tip.	This	jump	in	pressure	results	
from	 the	 viscous	 interaction.	 On	 the	 other	 hand,	 figures	 8	 and	 9	 depict	 the	 growth	 of	 the	
boundary	 layer,	 whose	 thickness	 is	 smaller	 than	 the	 shock	 layer	 depicted	 in	 figure	 7.	 The	
boundary	 layer	 and	 shock	 layer	 height	 is	 approximately	 0.000528	 and	 0.001	 units	 of	 non-
dimensional	 units,	 at	 0.252	 units	 from	 the	 leading	 edge,	 respectively.	 Nonetheless,	 figure	 9	
demonstrated	that	the	viscous	interaction	affects	the	inviscid	region	inside	the	shock	layer.	Figure	
9	clearly	shows	that	the	inviscid	lines	are	displaced	upwards,	even	outside	of	the	boundary	layer.	
Quantitatively,	 figures	 7-9	 agree	with	 figure	 1.	 Also,	 figure	 10	demonstrates	 that	 the	highest	
temperature	is	concentrated	in	the	region	between	the	edge	of	the	boundary	layer	and	the	wall,	
which	was	anticipated	from	figure	4	and	has	also	been	reported	in	prior	research	14.	To	elucidate	
important	features,	the	flow	feature	extraction	functions	are	analyzed	and	presented	in	figure	
11-14.	

	 	
Figure	11.	Normal	Mach	number	contour	 Figure	12.	Q-	Criterion	contour	

Figure	11	represents	the	Mach	number	normal	to	the	shock,	whose	value	is	at	least	1	just	before	
the	shock	5.	It	can	be	observed	that	the	bow	shock	starts	slightly	ahead	of	the	tip	and	it	has	certain	
curvature.	This	characteristic	was	also	reported	in	Mohling	18.	Also,	figure	12	complements	the	
information	presented	in	the	previous	figures	(figures	7-11).	What	is	noteworthy,	is	the	fact	that	
figure	12	clearly	shows	three	distinct	layers;	viscous	layer,	turbulent	and	inviscid	layers.	Figures	
13	and	14	are	the	Q-criterion	and	vorticity	plot	at	x=	0.27,	respectively.	They	provide	quantitative	
information	that	allows	to	characterize	and	describe	these	three	layers.	A	viscous	layer	where	Q-
criterion	is	negative	since	the	asymmetric	tensor	is	negligible.	This	behavior	is	typical	in	viscous	
sub	layers	where	the	shear	stress	is	laminar	22.	A	second	layer,	named	turbulent	layer,	where	the	
swirling	motions	proper	of	turbulence	flows	make	Q-criterion	positive.	In	this	region,	viscosity	
contributes	to	create	entropy	and	consequently	vorticity	23.Finally,	an	inviscid	region	where	strain	
dominates	 over	 rotation	 and	 the	 flow	 is	 irreversible	 due	 to	 the	 presence	 of	 the	 shock	 that	
increases	the	pressure	and	temperature	across	the	shock.		
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Figure	13.	Q-criterion	(x=0.27)	 Figure	14.	Vorticity	(x=0.27)	

Furthermore,	it	is	important	to	note	that	the	details	of	the:	viscous,	inviscid,	merged	and	shock	
layer	represented	in	figure	1,	were	accurately	predicted	by	the	IDS	and	demonstrated	in	figure	
12.	It	can	be	concluded	that	both	functions	extract	the	shock-wave	nearly	on	the	same	location.	
However,	figure	11	shows	a	weak	shock	slightly	ahead	of	the	shock	predicted	by	the	Q-criterion.		

The	hypersonic	flow	cross	jet	interaction	problem	

Consider	a	hypersonic	flow	over	a	flat	plate	where	supersonic	fuel	is	injected	perpendicular	to	
the	freestream	direction.	The	hypersonic	current	bends	the	supersonic	flow	injection	yielding	to	
complex	interactions	due	to	the	presence	of	different	shock	waves	and	zones	with	recirculation	
and	 complex	 vortical	 structures.	 This	 flow	 configuration	 has	 important	 applications	 in	 the	
aerospace	 field,	 specifically	 in	 air-breathing	 hypersonic	 engines	 (Scramjets).	 Therefore,	
understating	the	flow	behavior	and	the	different	complex	structures	 is	mandatory	to	 increase	
the	efficiency,	decrease	fuel	consumption,	flame	stability	and	control	the	shock-wave	boundary	
layer	 interactions.	 Due	 to	 short	 residence	 time,	 fuel	mixing	 is	 an	 important	 parameter.	 In	 a	
previous	 research	 study,	 flow	 features	 of	 non-reacting	 and	 reacting	were	 analysed	 including	
shock	structures	and	interaction	of	vertical	structures	using	Large	Eddy	Simulations	(LES)	24.	They	
demonstrated	 that	 temperature	 and	 recirculation	 behind	 the	 flow	 injection	 created	 suitable	
conditions	 of	 auto-ignition	 and	 flame	 stability.	 Previously,	 Reynolds-Averaged	 Navier-Stokes	
equations	(RANS)	were	used	to	investigate	the	details	of	the	flow	physics;	findings	demonstrated	
that	the	flow	field	was	dominated	by	shock	formations	and	their	coupling	with	the	strong	vortical	
structures	25.	In	addition,	the	pressure	ratio	of	the	jet	to	the	freestream	is	the	most	important	
parameter.	The	penetration	height	and	separation	 length	was	highly	affected	by	the	pressure	
ratio	26.	The	latter	group	demonstrated	that	the	boundary	layer	thickness	played	a	minor	role	
and	that	the	slot	width	affects	the	flow	field	almost	proportionally	26,	27.	

The	 present	 research	 does	 not	 consider	 chemical	 reactions	 and	 it	 focuses	 on	 predicting	 the	
complex	interaction	of	different	shock-wave	structures	and	viscous	–	inviscid	coupling	using	IDS.	
This	 study	 provides	 relevant	 details	 that	 can	 improve	 the	 understanding	 of	 the	 important	
features	responsible	for	fuel	mixing,	combustion	stability	and	pressure	distribution.	It	is	worth	
mentioning	 the	 challenges	 of	 this	 problem.	 Although	 we	 are	 solving	 the	 2-D	 Navier	 Stokes	
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equations,	there	are	essential	features	that	are	3-D,	such	as:	recirculation	and	vortex	stretching.	
Nevertheless,	we	expect	to	predict	those	features	accurately	and	extend	this	analysis	under	a	3-
D	framework.	This	study	also	considers	that	air	is	calorically	perfect,	although	experimental	data	
suggest	that	calorically	imperfect	gas	should	be	used	28.	

Consider	the	case	of	hypersonic	flow	with	a	Mach	number	of	6.0	and	a	Reynolds	number	set	to	
1.3047x107,	the	Prandtl	number	set	to	0.789	and	the	specific	ratio	set	to	1.4.	 In	addition,	the	
freestream	density,	temperature,	viscosity,	and	pressure	were	assumed	to	be	0.090	kg/m3,	57.23	
K,	3.7655x10-6	kg/ms,	and	1478.26	Pa,	respectively.	Figure	15	shows	a	representation	of	the	flow	
field	and	figure	16	depicts	the	computational	representation	of	the	problem	of	 interest	along	
with	the	boundary	conditions.	Dimensions	shown	in	figure	16	are	in	meters.	As	figure	15	shows,	
different	features	are	depicted.	Inviscid	shock	such	as:	Barrel,	reattachment,	bow	and	separation	
are	present.	Also,	there	are	also	two	main	recirculation	zones	located	behind	and	ahead	of	the	
injection	point.	 It	 is	of	 interest	to	note	that	the	recirculation	zone	 is	confirmed	by	a	 family	of	
different	coherent	vortices	that	improve	the	mixing	of	air	with	fuel	29.	

	
	

Figure	15.	Schematic	view	of	structures	30	 Figure	16.	Computational	representation	

The	2-D	computational	domain	was	developed	for	a	flat	plate	with	a	length	of	0.6	and	the	height	
of	the	computational	domain	was	0.12	meters	respectively.	The	lower	plane,	i.e:	the	bottom	wall,	
corresponds	to	the	solid	surface	of	the	flat	plate.	Vertical	gradient	for	temperature	and	density	
were	set	to	zero	 𝜕𝑇/𝜕𝑦 = 	𝜕𝜌/𝜕𝑦 = 0.0 	and	no-slip	conditions	were	imposed	on	the	flat	plate.	
The	 jet	was	assumed	 to	have	a	 step	profile,	 i.e:	no	boundary	 layer	 in	 the	 injection	point	was	
considered.	The	injector	was	simulated	by	a	small	gap	of	width	1.644x10-3	meters	at	the	bottom	
wall	at	0.350	meters	from	the	leading	edge.	The	Mach	number	of	the	injector	was	set	to	1.	The	
injection	temperature	and	density	was	set	to	4.5	a	21.0,	respectively.	Under	these	conditions,	
the	 pressure	 ratio	 between	 the	 injection	 point	 and	 the	 freestream	 is	 defined	 as	 94.49.	
Extrapolation	boundary	conditions	were	used	on	the	top	boundary	and	at	the	exit	plane	(outlet).	
Finally,	symmetric	boundary	conditions	were	used	behind	the	flat	plate.	The	boundary	condition	
at	the	inlet	was	divided	into	two	portions;	one	above	and	the	other	below	the	boundary	layer	
height.	The	primitive	variables	were	set	to	its	freestream	values	for	both	portions,	except	for	the	
horizontal	component	of	the	velocity	vector.	Although	the	flow	upstream	the	injector	is	expected	
to	be	fully	developed,	and	therefore	turbulent,	it	was	decided	to	use	a	laminar	profile	to	define	
the	velocity	profile.	This	assumption	combined	with	the	length	ahead	of	the	injection	point	(0.350	
meters)	 allows	 the	 boundary	 layer	 to	 develop	 to	 its	 proper	 equilibrium	 state.	 To	 define	 the	
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profile,	an	imaginary	buffer	length	of	0.24	meters	was	used	to	compute	the	theoretical	profile	
based	on	the	Reynolds	and	Mach	number	used	in	this	problem.		

The	2-D	solution	provided	by	the	IDS	is	a	set	of	four	independent	flow	field	variables	that	describe	
the	physics	associated	with	the	problem	of	interest.	The	grid	sensitivity	analysis	is	based	on	these	
four	 primitive	 variables	 and	 it	 followed	 the	 same	 methodology	 presented	 in	 the	 previous	
problem.	 Four	 set	 of	 grid	 solution	were	 tested,	 ranging	 from	1001x1001	 to	 8001x8001	 node	
points	in	the	horizontal	and	vertical	direction.	The	maximum	difference	between	two	consecutive	
grid	refinements	was	18	%.	The	boundary	layer	height	at	0.163	non-dimensional	units	from	the	
leading	 edge	 is	 approximately	 3.92x10-3	 meter	 height,	 whereas	 the	 height	 described	 by	 the	
expression	used	at	 the	 inlet	boundary	conditions	was	8.75x10-5.	 It	was	corroborated	 that	 the	
boundary	developed	up	to	its	proper	equilibrium.		

	
	

Figure	17.	“U”	velocity	contour	 Figure	18.	"V"	velocity	contour	

Figures	17	and	18	show	the	horizontal	and	vertical	components	of	the	velocity	vector.	It	can	be	
inferred	from	these	two	plots	that	flow	injection	acts	as	an	obstruction	to	the	main	stream	flow,	
causing	 a	 bow	 shock.	 The	 stream-tracers	 corroborate	 this	 hypothesis	 merging	 ahead	 of	 the	
injection	 point.	 It	 is	 important	 to	mention	 that	 to	 the	 author’s	 knowledge	 there	 is	 no	 other	
published	research	that	has	produced	findings	similar	to	those	that	use	the	conditions	utilized	in	
this	study,	specifically	when	it	comes	to	Re	and	Mach	numbers.	Nevertheless,	common	features	
are	depicted	in	these	two	plots.	Figures	17	and	18	clearly	show	two	important	separation	zones	
(recirculation).		

The	 strongest	 recirculation	 appears	 behind	 the	 injection	 section.	 Another	 small	 separation,	
ahead	of	the	injection,	is	also	reported	in	previous	research	Rana	et	al.	31	and	in	this	case,	this	
zone	presents	two	vortices;	one	elongated	that	forms	at	the	root	of	the	separation	region	and	
another	located	closest	to	the	low	pressure	zone	where	the	injection	point	is	located	(fig.	19).	
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Figure	20	represents	the	Q-criterion	and	it	corroborates	that	are	mainly	two	recirculation	zones,	
colored	in	light	red.	

Also,	figure	20	demonstrates	that	the	features	shown	as	steep	gradients	on	both	components	of	
the	velocity	vector	correspond	to	zones	with	intense	strain,	highly	negative	values	of	Q-criterion,	
colored	by	light	green.	Figures	21	and	22	represent	the	Normal	Mach	number	and	the	Normal	
density	 gradient	 plots,	 respectively.	 Both	 figure	 agree	 on	 the	 prediction	 of	 the	 compression	
waves	 and	 they	 show	 the	 complete	 shock	 structures,	 namely:	 bow,	 separation,	 barrel,	
reattachment	 shocks	 and	 expansion	 waves.	 Furthermore,	 it	 is	 evident	 that	 figure	 22	
complements	figure	21	since	it	provides	evidence	about	expansion	zones,	colored	in	light	green	
and	blue	zones	(negative	values).	It	is	of	interest	to	note	the	disadvantage	of	relying	only	on	the	
primitive	variables.	Although	figures	17	and	18	agree	with	the	bow	shock	predicted	by	figures	21	
and	22,	it	is	not	possible	to	identify	the	reattachment	and	barrel	shock	shown	in	figures	21	and	
22.	

	 	
Figure	21.	Normal	Mach	number	plot	 Figure	22.	Normal	Density	gradient	

Figures	23	and	24	provide	evidence	of	the	dynamic	of	the	flow	in	the	injection	section.	As	the	jet	
emerges	 into	the	main	stream,	the	supersonic	flow	expands	as	 it	shown	in	figure	23	with	the	
vectors	representing	the	expansion	fans.	It	is	seen	that	the	barrel	shock	obtained	in	this	case	is	
wider	compared	to	the	Rana	et	al.	11,	31,	these	discrepancies	are	due	to	the	difference	in	Mach	
and	Reynolds	Number.	As	the	supersonic	flow	meets	the	subsonic	region	behind	the	bow	shock,	
another	shock	forms	called	“Barrel	Shock”.	This	shock	is	clearly	shown	by	Figures	21	and	22,	also,	
figure	24	provides	evidence	of	this	zone	since	pressure	drastically	changes	through	this	area.	

One	 important	difference	 is	 the	size	of	 the	recirculation	zone	that	 forms	behind	the	 injection	
point	 and	 the	 compression	 shocks	 that	 emanates	 at	 the	 reattachment	 point.	 In	 contrast	 to	
previous	research	studies	such	as:	Viti	et	al.	25,	Rana	et	al.	31	and	Kawai	et	al.	32	the	injection	plume	
is	pushed	along	the	main	flow,	decreasing	penetration	of	the	cross-flow.	Also,	the	region	behind	
the	 injection	 is	attached	to	the	bottom	wall,	whereas	the	previous	studies	show	a	separation	
bubble.	It	is	important	to	mention	that	difference	in	the	momentum	ratio	used	in	this	research	
study	(Mach	=6.0)	causes	the	difference	in	the	location	of	the	separation	bubble.	

	 	
Figure	19.		“U”	velocity	contour	 Figure	20.	Q-	Criterion	
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Figure	23.	“U”	velocity	component	with	
vector	

Figure	24.	Pressure	Contour		

The	figure	23	shows	that	the	flow	is	attached	up	to	approximately	0.83	non-dimensional	units	
where	 the	 flow	 separates	 and	 form	 the	 bubble	 shown	 in	 figure	 23.	 The	 low-pressure	 zone	
produced	 by	 the	 expansion	 fans	 cause	 a	 local	 acceleration	 of	 the	 fluids	 causing	 a	 secondary	
separation	 waves	 and	 subsequently	 expansions	 waves	 that	 produces	 a	 secondary	 local	
acceleration	that	end	up	with	the	final	reattachment	shock	wave.	It	is	noteworthy	to	mention	the	
complex	pressure	field	of	this	problem	caused	by	low	pressure	due	to	the	expansion	fans	at	the	
injection	point	and	the	high-pressure	level	caused	by	the	bow	shock.	The	combination	of	these	
two	 phenomena	 cause	 the	 secondary	 separation	 bubble	 that	 strongly	 affects	 the	 flow	
downstream.		

CONCLUSIONS	

A	new	numerical	scheme	for	solving	the	2D	Navier	Stokes	equations	was	validated	using	Flow	
Feature	extraction	functions	to	demonstrate	the	physics	based	capabilities	of	the	new	scheme	
called	IDS.	At	this	stage	of	development,	it	was	demonstrated	that	the	IDS	has	the	capabilities	to	
predict	the	complex	structure	of	the	problem	solved	in	this	research	study.	This	scheme	is	called	
the	Integro-Differential	Scheme	(IDS)	and	it	uses	a	method	of	consistent	averages	to	provide	an	
explicit	scheme	time	marching	solution.	It	was	demonstrated	that	different	FFEF	are	required	to	
extract	important	information	directly	and	accurately.	A	set	of	functions	are	required	since	one	
function	by	 itself	cannot	reveal	all	 the	details	due	to	their	sensibility	to	numerical	dissipation.	
Therefore,	 these	 functions	 complement	 the	 traditional	 approach	 of	 using	 contour	 plots	 of	
primitive	variables	to	locate	shocks	waves.	
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